
Rikaline GPS-25

GPS Board

User's Guide

Rikaline International Corp.

14F, 171, Chen-Gong Road, San-Chong City, Taipei 241, Taiwan Phone: +886-2-8973-1899 Fax: +886-2-8973-1896 E-Mail: info@rikaline.com.tw Web: www.rikaline.com.tw

All Right Reserved

TABLE OF CONTENTS

1.	Intro	duction	
	1.1	Overview	3
	1.2	Features	3
	1.3	Technical Specifications	3
2.	Oper	ational Characteristics	5
	2.1	Initialization	5
	2.2	Navigation	5
3.	Hard	ware Interface	6
	3.1	Physical Characteristics	6
	3.2	Hardware	6
	3.3	Connector	6
	3.4	Pad Assignment	6
	3.5	Other function description	8
4.	Softv	vare Interface	9
	4.1	NMEA Transmitted Sentences	9
	4.2	RTCM Received Data	12
5.	Earth	Datums & Output Setting	13
	5.1	Earth Datums	
	5.2	Output Setting	13
6.	Orde	ring Information	14
	6.1	Product Options	14
	6.2	Accessories	14
7	Warr	antv	18

1. Introduction

1.1 Overview

The *Rikaline* **GPS-25 GPS Engine Board** is designed based on **SiRF Star III** new generation architecture with low power consumption, small size and easy integrated for a broad spectrum of OEM system applications. It acquires satellite 20 channel parallel and tracking 12 at a time. The 200,000 effective correlators ensure fast TTFF and fast TTFF at low signal level.

The GPS-25 meets strict needs such as car navigation, mapping, surveying, security, agriculture and so on. Only clear view of sky and certain power supply are necessary to the unit. It communicates with other electronic utilities via compatible TTL and saves critical satellite data by built–in backup memory. The Trickle-Power allows the unit operates a fraction of the time and Push-to-Fix permits user to have a quick position fix even though the receiver usually stays off.

For flexible design of your system, we provide you GPS-25 with embedded passive antenna and active antenna connector on board. There is an electric switch between the 2 type antennas to maximize the advanced performance.

1.2 Features

The GPS-25 provides a host of features that make it easy for integration and use.

- 1. **SiRF Star III** chipset with embedded ARM7TDMI CPU available for customized applications in firmware.
- 2. High performance receiver acquires 20 channel parallel and tracks up to 12 satellites while providing first fast fix and low power consumption.
- 3. Differential capability utilizes real-time RTCM corrections producing 1-5 meter position accuracy.
- 4. Compact design ideal for applications with minimal space.
- 5. A rechargeable battery sustains internal clock and memory. The battery is recharged during normal operation.
- 6. User initialization is not required.
- 7. Dual communication channels and user selectable baud rates allow maximum interface capability and flexibility.
- 8. Optional customer design for any possible size down to 16 x 20mm.
- 9. FLASH based program memory: New software revisions upgradeable through serial interface.
- 10. Built-in WAAS and EGNOS demodulator (optional software).

1.3 Technical specifications

1.3.1 Physical Characteristics

Dimension: 42(L) x 32(W) x 10.5(H) mm 1.65"(L) x 1.26"(W) x 0.41"(H). Weight: 33g

1.3.2 Environmental Characteristics

- 1) Operating temperature: -40°C to +85°C
- 2) Storage temperature: -55°C to +100°C.

1.3.3 Electrical Characteristics

- 1) Input voltage: +3.0 ~ 6.0 VDC
- 2) Backup power: 3V Rechargeable Lithium cell battery, up to 230 hours (9.5 days) discharge.

1.3.4 Performance

- 1) Acquisition: 20 channel parallel
- 2) Tracking: up to 12 satellites
- 3) Update rate: 1 second
- 4) Acquisition time

Reacquisition 0.1 sec., averaged 3 sec, averaged Hot start 6 sec, averaged Warm start 28 sec., averaged 42 sec., averaged

4) Position accuracy:

A) Non DGPS (Differential GPS)

Position <10 M at 2D RMS

Velocity 0.1 meters/second, with SA off

Time 1 microsecond synchronized GPS time

B) DGPS (Differential GPS) or WAAS / EGNOS Position 1 ~ 5 meter, typical

Velocity 0.05 meters/second, typical

5) Dynamic Conditions:

Altitude 18,000 meters (60,000 feet) max

Velocity 515 meters / second (1000 knots) max

Acceleration 4 G, max

Jerk 20 meters/second, max

6) Time Mark PPS

Level TTL Pulse Duration 100ms

Time Reference at the pulse positive edge

Measurements Aligned to GPS second, ± 1 microsecond

1.3.5 Interfaces

- 1) Dual channel TTL compatible level, with user selectable baud rate (4800, 9600-Default, 19200, 38400).
- 2) NMEA 0183 Version 2.2 ASCII output (GPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG).
- 3) SiRF protocol--- Position, Velocity, Altitude, Status and Control

2. Operational characteristics

2.1 Initialization

As soon as the initial self-test is complete, the GPS-25 begins the process of satellite acquisition and tracking automatically. Under normal circumstances, it takes approximately 42 seconds to achieve a position fix, 38 seconds if ephemeris data is known. After a position fix has been calculated, information about valid position, velocity and time is transmitted over the output channel.

The GPS-25 utilizes initial data, such as last stored position, date, time and satellite orbital data, to achieve maximum acquisition performance. If significant inaccuracy exists in the initial data, or the orbital data is obsolete, it may take more time to achieve a navigation solution. The GPS-25 Auto-locate feature is capable of automatically determining a navigation solution without intervention from the host system.

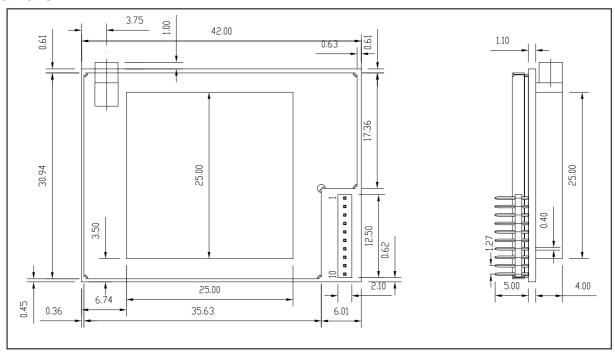
2.2 Navigation

After the acquisition process is complete, the GPS-25 sends valid navigation information over output channels. These data include:

- 1) Latitude/longitude/altitude
- 2) Velocity
- 3) Date/time
- 4) Error estimates
- 5) Satellite and receiver status

The GPS-25 sets the default of auto-searching for real-time differential corrections in RTCM SC-104 standard format, with the message types 1, 5, or 9. It accomplishes the satellite data to generate a differential (DGPS) solution. The host system, at its option, may also command the GPS-25 to output a position whenever a differential solution is available.

3. Hardware interface


3.1 Physical Characteristics

Dimension: 42(L) x 32(W) x 10.5(H) mm 1.65"(L) x 1.26"(W) x 0.41"(H).

Weight: 17.6g

3.2 Hardware

Dimension in mm

3.3 Connectors

3.3.1 Antenna Connector

It is designed with MMCX for active antenna.

3.3.2 Interface Connector

10 pin connector with 1.27mm pitch.

3.4 Pin Assignment

Table 3-1 Pin definition of the 10 Digital Interface

Pad Number	Name	Description
1	VCC IN	3-6Vdc
2	BACKUP BAT	For backup battery
3	GND	Ground
4	RX (TTL)	Serial data input
5	TX (TTL)	Serial data output
6	PPS / DGPS	One of these functions active at a time
7	GPIO	Spare I\O for customer software
8	GPS STATE	For LED indication

GPS-25 Operating Manual

9	P-T-F	PUSH-TO-FIX
10	RESET	System Restart

Table 3-2 Operating Conditions

Parameter	Symbol	Min	Туре	Max	Units
Power Supply Voltage	VCC IN	3.0	5.0	6.0	V
Power Supply Voltage	BACKUP BAT	1.4	1.5	1.6	V
Operating Temperature	TOPR	-40		85	°C
Operating Current	ICC		90		mA

Table 3-3 Battery Conditions

Parameter	Symbol	Min	Тур	Max	Units
RTC (Battery) Power	BACKUP BAT	1.4	1.5	1.6	V
Supply Current			10		μΑ

3.4.1 VCC IN

It power range is from 3.0Vdc to 6.0Vdc.

3.4.2 BACKUP BAT

It requires **1.5Vdc** and the function is to keep the GPS clock running in the system for quick position fix next time.

3.4.3 GND

The GND provides the ground for the board. All GND should be connected.

3.4.4 Rx (TTL)

This pad is for data Input to control the GPS output or GPS system setting

3.4.5 Tx (TTL)

It outputs standard NMEA 0183 V2.2 sentences, SiRF binary or either one of NMEA and SiRF binary

3.4.6 DGPS / PPS Time mark (R7 DGPS / R10 PPS)

This pin can have one function of the two active. If the on-board resistance, R7 connected and R10 Open, pin 6 accepts DGPS signal. If R7 open and R10 connected, it outputs PPS signal.

3.4.6.1 DGPS

Real-time Differential Correction input (RTCM SC-104 version 2.00 message types 1, 5 and 9). For use with Radio-Beacon for positioning correction. It always requires baud rate at 9600.

3.4.6.2 PPS Time Mark

This function provides 1 pulse per second output from the board, which is synchronized to within 1 microsecond of GPS time. The output is a CMOS (TTL) level signal.

3.4.7 SPARE GPIO Functions

This I/Os of CPU is connected to the digital interface connector for consumer applications.

3.4.8 GPS LED

To have GPS positioning status visible. Default: Blinking (Power ON) and ON (position fix)

3.4.9 Push-to-Fix Description

The Push-to-Fix mode is for the applications that requires infrequent position reporting. The receiver generally stays in a low-power mode, up to 2 hours, but wakes up periodically to refresh position, time, ephemeris data and RTC calibration. A position request acts as a wakeup to the receiver, which is then able to supply a position within the hot-start time specification.

3.4.10 RESET

This function provides an active-low reset input to the board. It causes the board to reset and start searching for satellites. It is an optional input and, if not utilized, it may be left open.

3.5 Other Function Description 3.5.1 TricklePower™ Description

In this state, the CPU is in a low power standby state and the receiver clocks are off with only the RTC clock active. After a set amount of time, the RTC generates an NMI signal to wake up the ARM-7 microprocessor and reset the receiver back to tracking state.

4. Software Interface

4.1 NMEA Transmitted Messages

The GPS-25 supported by SiRF Technology Inc. also outputs data in NMEA-0183 format as defined by the National Marine Electronics Association (NMEA), Standard. The default communication parameters for NMEA output are 4800 baud, 8 data bits, stop bit, and no parity.

Table 4-1 NMEA-0183 Output Messages

NMEA Record	Description				
GPGGA	Globle positioning system fixed data				
GPGLL	Geographic position- latitude/longitude				
GPGSA	GPGSA GNSS DOP and active satellites				
GPGSV	GNSS satellites in view				
GPRMC	Recommended minimum specific GNSS data				
GPVTG	Course over ground and ground speed				

4.1.1 Global Positioning System Fix Data (GGA)

Table 4-2 contains the values for the following example:

\$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M,,,,,0000*18

Table 4-2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	161229.487		Hhmmss.sss
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table 5-3
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	Meters	
Units	M	Meters	
Geoid Separation		Meters	
Units	M	Meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*18		
<cr> <lf></lf></cr>		-	End of message termination

Table 4-3 Position Fix Indicator

Value	Description	
0	O Fix not available or invalid	
1	GPS SPS Mode, fix valid	
2	Differential GPS, SPS Mode, fix valid	
3	GPS PPS Mode, fix valid	

4.1.2 Geographic Position with Latitude/Longitude (GLL)

Table 4-4 contains the values for the following example:

\$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C

Table 4-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	Ν		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
UTC Position	161229.487		hhmmss.sss
Status	Α		A=data valid or V=data not valid
Checksum	*2C		
<cr> <lf></lf></cr>			End of message termination

4.1.3 GNSS DOP and Active Satellites (GSA)

Table 4-5 contains the values for the following example:

\$GPGSA,A,3,07,02,26,27,09,04,15, , , , , 1.8,1.0,1.5*33

Table 4-5 GSA Data Format

Table 4-3 OOA Data I Offilat					
Name	Example	Units	Description		
Message ID	\$GPGSA		GSA protocol header		
Mode 1	Α		See Table 5-6		
Mode 2	3		See Table 5-7		
Satellite Used (1)	07		Sv on Channel 1		
Satellite Used (1)	02		Sv on Channel 2		
Satellite Used			Sv on Channel 12		
PDOP	1.8		Position Dilution of Precision		
HDOP	1.0		Horizontal Dilution of Precision		
VDOP	1.5		Vertical Dilution of Precision		
Checksum	*33				
<cr> <lf></lf></cr>			End of message termination		

⁽¹⁾ Satellite used in solution.

Table 4-6 Mode 1

Value	Description
М	Manual—forced to operate in 2D or 3D mode
Α	2D Automatic—allowed to automatically switch 2D/3D

Table 4-7 Mode 2

Value	Description
1	Fix Not Available
2	2D
3	3D

4.1.4 GNSS Satellites in View (GSV)

Table 4-8 contains the values for the following example:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71 \$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Table 4-8 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of Messages	2		Range 1 to 3

Message Number	1		Range 1 to 3
Satellites in View	07		Range 1 to 12
Satellite ID	07		Channel 1 (Range 1 to 32)
Elevation	79	degrees	Channel 1 (Maximum 90)
Azimuth	048	degrees	Channel 1 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Satellite ID	27		Channel 4 (Range 1 to 32)
Elevation	27	degrees	Channel 4 (Maximum 90)
Azimuth	138	degrees	Channel 4 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr> <lf></lf></cr>			End of message termination

NOTE: Items <4>,<5>,<6> and <7> repeat for each satellite in view to a maximum of four (4) satellites per sentence. Additional satellites in view information must be sent in subsequent sentences. These fields will be null if unused.

4.1.5 Recommended Minimum Specific GNSS Data (RMC)

Table 4-9 contains the values for the following example:

\$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10

Table 4-9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	161229.487		hhmmss.sss
Status	Α		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	Knots	
Course Over Ground	309.62	Degrees	True
Date	120598		Ddmmyy
Magnetic Variation (1)		Degrees	E=east or W=west
Checksum	*10		
<cr> <lf></lf></cr>	-		End of message termination

⁽¹⁾ SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

4.1.6 Course Over Ground and Ground Speed (VTG)

Table 4-10 contains the values for the following example:

\$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

Table 4-10 VTG Data Format

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	Degrees	Measured heading
Reference	T		True
Course		Degrees	Measured heading
Reference	M		Magnetic (1)
Speed	0.13	Knots	Measured horizontal speed

GPS-25 Operating Manual

Units	N		Knots
Speed	0.2	Km/hr	Measured horizontal speed
Units	K		Kilometers per hour
Checksum	*6E		·
<cr> <lf></lf></cr>			End of message termination

(1) SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

4.2 RTCM Received Data

The default communication parameters for DGPS Input are 9600 baud, 8 data bits, stop bit, and no parity. Position accuracy of less than 5 meters can be achieved with the GPS-25 by using Differential GPS (DGPS) real-time pseudo-range correction data in RTCM SC-104 format, with message types 1, 5, or 9. As using DGPS receiver with different communication parameters, GPS-25 may decode the data correctly to generate accurate messages and save them in battery-back SRAM for later computing.

5. Earth Datums & Output Setting

5.1 Earth Datums

The GPS-25 is built in earth datum with WGS84.

5.2 Setting

5.2.1 Manufacturing Default

Datum: WGS84. Baud Rate: 9600.

Output: GGA, GLL, GSA(5), GSV(5), RMC, VTG

5.2.2 Baud Rate and Output Sentences Setting

5.2.2.1 By SiRFdemo Program

- 1// Connect your GPS-6010 to PC (either COM or USB)
- 2// Execute SiRFdemo.exe (Program is in the CD)
- 3// When "Data Source Setup" shows, select the port (COM 1, 2 or 3....) you used, click "OK".
- 4// Click "Action", select "Open Data Source", Then you will see lots of sentences shows. All the sentences start with \$GPxxxx. This is NMEA protocol. If you do not see these sentences, please click "View", "Select Message", then click "Development". The message will appear. If it still shows nothing, then continue below steps.
- 5// There is a screen "Selection of Target Receiver Software" might appear, please select "SiRFstar II".
- 6// Click "Action", Select "Switch to SiRF Protocol". Then you will see SiRF binary and the sentences start with #Time, shows every 4 lines and you can not see the sentences start with \$GP. These sentences are for setting or viewing the GPS receiver's performance. If your software is using standard NMEA protocol, please do the following:
- 7// Click "Action", Select "Switch to NMEA Protocol". You will see GGA, GSV, GSA and RMC in black and the Baud Rate is 4800. These are the default we put inside the receiver. Please click "OK". Then you can use it as a standard GPS receiver. If your software uses different sentence, please choose the sentences you need.

After above actions, the new setting will be kept in SRAM. If no power supplied to GPS-6010 for more than 30 days, user must re-set again when power on.

Details please refer to SiRFDemo

6. Ordering Information

6.1 Product Options

6.1.1 Standard Product

GPS-25: Integrated with Patch Antenna and External Antenna Connector (with cut-off circuit

between passive and active antenna)

GPS-25-X: With external antenna connector but without patch antenna.

6.2 Accessories

A-10302-M Active Antenna, 2-Meter, MMCX 180° connector A-10302-MA Active Antenna, 2-Meter, MMCX 90° connector A-10305-M Active Antenna, 5-Meter, MMCX 180° connector A-10305-MA Active Antenna, 5-Meter, MMCX 90° connector

7. Warranty

The GPS-25 is warranted to be free from defects in material and functions for one year from the date of purchase. Any failure of this product within this period under normal conditions will be replaced at no charge to the customers.